Отдел образования муниципального района Сосновоборский район Пензенской области Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа села Индерка Сосновоборского района Пензенской области

ПРИНЯТА . Педагогическим советом МБОУ СОШ с.Индерка Протокол №11 от 21.08.2025 г.

СОГЛАСОВАНА Советом МБОУ СОШ с.Индерка Протокол № 1 от 21.08.2025 г. УТВЕРЖДАЮ Директор МБОУ СОШ с.Индерка

Баишева А.Р. Приказ №172 от 21.08.2025 г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Занимательная робототехника»

Возраст обучающихся: 11-15 лет Срок реализации программы: 1 год Уровень освоения: стартовый

Автор-составитель: Аббясов Батыр Джафярович педагог дополнительного образования

Пояснительная записка.

Дополнительная общеобразовательная общеразвивающая программа «Занимательная робототехника» составлена на основе следующих нормативных документов:

- Федерального закона от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- Федерального Закона от 31 июля 2020 года № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся»;
- Приказа Министерства просвещения РФ от 27 июля 2022 г. N 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Распоряжения Правительства РФ от 31 марта 2022 г. N 678-р «Об утверждении Концепции развития дополнительного образования детей до 2030 г. и плана мероприятий по ее реализации»;
- Постановления Правительства Российской Федерации от 11.10.2023 №1678 «Об утверждении Правил применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Постановления главного государственного санитарного врача Российской Федерации от 28.09.2020 «Об утверждении санитарных правил СП 2.4.3648.20. Санитарно эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Целевой модели развития региональной системы дополнительного образования детей (приказ Министерства просвещения РФ от 3 сентября 2019 г. № 467);
- Указа Президента РФ от 09.11.2022 N 809 «Об утверждении Основ государственной политики по сохранению и укреплению традиционных российских духовно-нравственных ценностей»;
- Указа Президента РФ от 07.05.2024 N 309 «О национальных целях развития Российской Федерации на период до 2030 года и на перспективу до 2036 года»;
- Методических рекомендаций по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы) (разработанные Минобрнауки России совместно с ГАОУ ВО «Московский государственный педагогический университет», ФГАУ «Федеральный институт развития образования», АНО ДПО «Открытое образование», 2015 г.) (Письмо Министерства образования и науки РФ от 18.11.2015 № 09-3242);
- Методических рекомендаций по реализации адаптированных дополнительных общеобразовательных программ, способствующих социально-психологической реабилитации, профессиональному самоопределению детей с

ограниченными возможностями здоровья, включая детей-инвалидов, с учетом их особых образовательных потребностей. (Письмо Министерства образования и науки РФ № ВК-641/09 от 26.03.2016);

- Методических рекомендаций по проектированию дополнительных общеразвивающих программ нового поколения в области физической культуры и спорта ФГБУ «Федеральный центр организационно-методического обеспечения физического воспитания» (2021 г.)
- Устава и локальных актов МБОУ СОШ с.Индерка.

По авторскому вкладу дополнительная общеобразовательная общеразвивающая программа «Занимательная робототехника» является модифицированной. В основу взята программа Петрунина А.А. «Робототехника VEX IQ» ЦДО ГБОУ СОШ «ОЦ «Южный город» пос. Придорожный».

Дополнительная общеобразовательная общеразвивающая программа «Занимательная робототехника» имеет техническую направленность.

Актуальность программы определяется востребованностью развития данного направления деятельности современным обществом. Удовлетворяет творческие, познавательные потребности учащихся, досуговые потребности, обусловленные стремлением к содержательной организации свободного времени.

Новизна программы заключается в использовании новых информационных технологий, что способствует развитию информационной культуры и взаимодействию с миром технического творчества. В процессе работы учащиеся приобретают опыт решения как типовых, так и нешаблонных задач по конструированию, программированию, сбору данных. Кроме того, работа в команде способствует формированию умения взаимодействовать, формулировать, анализировать, критически оценивать, отстаивать свои идеи.

Отличительные особенности программы:

Отличительная особенность дополнительной общеобразовательной общеразвивающей программы «Занимательная робототехника» состоит в том, что она позволяет в доступной и наглядной форме почувствовать преимущества инновационных технологий, получить реальный опыт построения высокотехнологичных устройств.

Педагогическая целесообразность программы состоит в том, что она предназначена для изучения основ робототехники, организации проектной деятельности, моделирования и технического творчества обучающихся; способствует освоению базовых навыков в области проектирования и моделирования объектов; направлены на стимулирование и развитие любознательности и интереса к технике.

Содержание программы способствует развитию системы универсальных учебных действий в составе личностных, регулятивных, познавательных и коммуникативных действий. Особое внимание уделяется математическим исследованиям и построению алгоритмов. Важный компонент занятий - практическое применение сконструированных моделей.

Педагогическая целесообразность программы «Занимательная робототехника» в том, что в ходе освоения программного материала, обучающиеся научатся объединять реальный мир с виртуальным; в процессе

конструирования и программирования получат дополнительное образование в области физики, механики, электроники и информатики.

Цель: развитие инженерно-технического потенциала учащихся, подготовка к деятельности в современном обществе, где важны высокие технологии.

Задачи:

- знакомить с конструктивным и аппаратным обеспечением платформы : джойстиком, контроллером робота и их функциями;
- дать первоначальные знания о конструкции робототехнических устройств;
- научить приемам сборки и программирования с использованием робототехнического образовательного конструктора;
 - обучить проектированию, сборке и программированию устройства;

Адресат программы: учащиеся 11-15 лет.

Количество учащихся в группе 15 человек.

Личностные качества: креативность, усидчивость, любознательность.

Возрастные особенности обучающихся 11 – 15 лет:

Психофизиологические характеристики учащихся различных возрастных групп показывают, что каждому возрасту присущи свои специфические особенности, влияющие на приобретение учащимися знаний и умений.

Период 11-12 лет характеризуется становлением избирательности, целенаправленности восприятия, становлением устойчивого, произвольного внимания и логической памяти, время перехода от мышления, основанного на оперировании конкретными представлениями к мышлению теоретическому. Данный этап можно охарактеризовать как время овладения самостоятельными формами работы, время развития интеллектуальной, познавательной активности обучающихся.

Так как ведущей деятельностью обучающихся данного возраста является общение, то наибольшие изменения во внутренней позиции связаны с взаимоотношениями с другими людьми, прежде всего со сверстниками. Резко возрастает значение коллектива, его общественного мнения, отношений со сверстниками, оценки ими его поступков и действий. Он стремится завоевать в их глазах авторитет, занять достойное место в коллективе. Заметно проявляется стремление к самостоятельности и независимости, возникает интерес к собственной личности, формируется самооценка, развиваются абстрактные формы мышления.

Периоду 12-13 лет свойственно чувство взрослости: потребность равноправия, и самостоятельности, требование серьезного, доверительного отношения со стороны взрослых. Поэтому, основываясь на уже накопленном определённом опыте и знаниях, полученных учащимися, можно давать им задания с большей интенсивностью и сложностью, опираясь на самостоятельное решение некоторых исполнительских задач.

Период 14-15 лет является благоприятным периодом для развития творческих способностей. И от того, насколько были использованы эти

возможности, во многом будет зависеть творческий потенциал взрослого человека. Средний школьный возраст является своеобразным мостиком между беззаботным детством и юностью с ее проблемами. В подростковом возрасте происходит дальнейшее развитие психических познавательных процессов и формирование личности. Наиболее существенные изменения в структуре психических познавательных процессов у лиц, достигших подросткового возраста, наблюдается в интеллектуальной сфере. В этот период происходит формирование навыков логического мышления, развивается логическая память. Активно развиваются творческие способности, и формируется индивидуальный стиль деятельности, который находит свое выражение в стиле мышления.

Главным требованием к учащимся 11-15 лет является в первую очередь желание, подкреплённое осознанным выбором и трудолюбием.

Сроки реализации программы: 1 год

Режим занятий: 2 раза в неделю по 1 часу; всего количество часов в год -72 часа;

Форма обучения: очная

Организационно-методические основы программы

Формы проведения занятий: объяснение, демонстрация и иллюстрация, индивидуальная или коллективная творческая работа и др.

Методы обучения - методы развивающего обучения: репродуктивный, наглядный, практический, словесный, игровой и т.д.

Ожидаемые результаты освоения программы

По окончанию первого года обучения:

Учащиеся будут знать:

- правила безопасной работы;
- конструктивные особенности различных моделей, сооружений и механизмов;
- приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.;

уметь:

- использовать основные алгоритмические конструкции для решения задач;
- конструировать различные модели; использовать созданные программы;
- применять полученные знания в практической деятельности;

владеть:

- навыками работы с роботами;
- базовыми навыками работы в среде программирования.

Личностные результаты:

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности качеств весьма важных в практической деятельности любого человека;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- воспитание чувства справедливости, ответственности;
- начало профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой.

Метапредметные результаты:

Регулятивные универсальные учебные действия:

- принимать и сохранять учебную задачу;
- планировать последовательность шагов алгоритма для достижения цели;
- формировать умения ставить цель создание творческой работы, планировать достижение этой цели;
- осуществлять итоговый и пошаговый контроль по результату;
- адекватно воспринимать оценку учителя;
- различать способ и результат действия;
- вносить коррективы в действия в случае расхождения результата решения задачи на основе ее оценки и учета характера сделанных ошибок;
- в сотрудничестве с учителем ставить новые учебные задачи;
- проявлять познавательную инициативу в учебном сотрудничестве;
- осваивать способы решения проблем творческого характера в жизненных ситуациях;
- оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

<u>Познавательные</u> универсальные учебные действия:

- осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;
- использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- ориентироваться на разнообразие способов решения задач;
- осуществлять анализ объектов с выделением существенных и несущественных признаков;
- проводить сравнение, классификацию по заданным критериям;
- строить логические рассуждения в форме связи простых суждений об объекте;

- устанавливать аналогии, причинно-следственные связи;
- моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- выбирать основания и критерии для сравнения, классификации объектов; <u>Коммуникативные</u> универсальные учебные действия:
 - аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
 - выслушивать собеседника и вести диалог;
 - признавать возможность существования различных точек зрения и права каждого иметь свою;
 - планировать учебное сотрудничество с учителем и сверстниками определять цели, функций участников, способов взаимодействия;
 - осуществлять постановку вопросов инициативное сотрудничество в поиске и сборе информации;
 - разрешать конфликты выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
 - управлять поведением партнера контроль, коррекция, оценка его действий;
 - уметь с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
 - владеть монологической и диалогической формами речи.

Учебный план

№	Год обучения	Количество часов
		стартовый
1.	1 год обучения	72
	Итого:	72

Учебно-тематический план

No	Наименование	Количество часов			Формы
п/п	темы	всего теория практика		аттестации и	
					контроля
1	Вводное	2	1	1	Беседа
	занятие.Робототехн				
	ика и инженерия.				

2	История робототехники. Виды конструкторов	2	1	1	Беседа
3	Основные элементы, основные приёмы соединения и конструирования	2	1	1	Беседа
4	Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов.	2	1	1	Викторина
5	Конструктивные элементы и комплектующие конструкторов	2	-	2	Опрос
6	Исполнительные механизмы конструкторов	2	1	1	Тест
7	Сборка модели робота по инструкции.	4	-	4	Анализ работ
8	Презентация и видеофильмы о современных роботизированных системах.	2	2	-	Беседа
9	Основы программирования. Программные блоки.	6	2	4	Тест
10	Воспроизведение звуков.	2	1	1	Наблюдение
11	Использование дисплея EV3.	4	2	2	Опрос
12	Движение вперед.	4	1	3	Наблюдение
13	Движение назад.	2	1	1	Наблюдение

14	Движение с ускорением.	4	1	3	Наблюдение
15	Плавный поворот, движение по кривой.	2	1	1	Наблюдение
16	Поворот на месте.	2	1	1	Наблюдение
17	Движение вдоль сторон квадрата.	2	1	1	Наблюдение
18	Разработка комплексной системы управления робота	2	1	1	Беседа
19	Конструируем собственные блоки - первая подпрограмма.	6	-	6	Анализ работ
20	Сборка робота	8	1	7	Анализ работ
21	Применение роботов в жизни	2	1	1	Викторина
22	Испытание робота в использовании.	6	2	4	Обсуждение, наблюдение
23	Соревнование роботов. Эстафета, преодоление препятствий. Выставка работ учащихся	2	-	2	Готовая работа
	Итого:	72	23	49	

Содержание программы

- 1. Вводное занятие, STEM. Робототехника и инженерия. Теория. Знакомство с группой. Объяснение плана, задач работы объединения. Инструктаж по технике и пожарной безопасности. Правила работы с электрическими приборами. Правила поведения в техническом кабинет. Контроль. Беседа
- 2. История робототехники. Виды конструкторов *Теория*. История робототехники: от машин до роботов. Просмотр видеофильмов об истории развития лего-конструирования.

Контроль. Беседа

3. Знакомимся с набором Lego Mindstorm и Arduino. Основные элементы, основные приёмы соединения и конструирования

Теория. Разновидности деталей.

Практика. Изучение деталей в наборе. Изучение формы, разнообразия деталей для дальнейших построек.

Контроль. Беседа

4. Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов. Правила работы с конструктором

Теория. Беседа о развитии робототехники в мировом сообществе и в частности в России.

Контроль. Викторина

5. Конструктивные элементы и комплектующие конструкторов

Теория. Знакомство с компонентами конструктора

Практика. Изучение деталей

Контроль. Опрос

6. Исполнительные механизмы конструкторов

Теория. Простейшие механизмы. Принципы крепления деталей. Рычаг. Зубчатая передача: прямая, коническая, червячная. Передаточное отношение. Ременная передача, блок. Колесо, ось.

Практика. Принципы крепления деталей.

Контроль. Викторина

7. Сборка модели робота

Практика. Построение модели по алгоритму.

Контроль. Анализ работ

8. Презентация и видеофильмы о современных роботизированных системах.

Теория. Просмотр видеофильмов о современных роботах и роботостроении.

9. Основы программирования. Программные блоки.

Теория. Знакомство с средой программирования

Практика. Изучение блоков, связи блоков программы с конструктором.

Контроль. Тест

10. Воспроизведение звуков.

Теория. Определение рабочих условий для ультразвуковых датчиков.

Практика. Изготовление для ультразвукового датчика модели болида, монтаж и программирование датчиков на уклонение робота от препятствий при его движении.

Контроль. Наблюдение

11. Использование дисплея EV3.

Теория. Принцип работы микроконтроллера

Практика. Подключение контроллера к компьютеру для связи с программой, подключение к блоку датчиков и двигателя.

Контроль. Опрос

12. Движение вперед.

Теория. Изучение по схемотехническим рисункам принципов работы двигателя, его конструкции. Сравнительные характеристики большого и малого моторов.

Практика. Принципы запуска двигателей (дополнительным двигателем; связки генератор — мотор). Замена колес с разным диаметром на двигателях.

Контроль. Наблюдение

13. Движение назад.

Теория. Изучение по схемотехническим рисункам принципов работы двигателя, его конструкции. Сравнительные характеристики большого и малого моторов.

Практика. Принципы запуска двигателей (дополнительным двигателем; связки генератор — мотор). Замена колес с разным диаметром на двигателях.

Контроль. Наблюдение

14. Движение с ускорением.

Теория. Изучение по схемотехническим рисункам принципов работы двигателя, его конструкции. Сравнительные характеристики большого и малого моторов.

Практика. Принципы запуска двигателей (дополнительным двигателем; связки генератор — мотор). Замена колес с разным диаметром на двигателях.

Контроль. Наблюдение

15. Плавный поворот, движение по кривой.

Теория. Определение рабочих условий для датчиков поворота

Практика. Изготовление робота согласно инструкции для наработки опыта с датчиком поворота (Гироскоп)

Контроль: Наблюдение

16. Поворот на месте.

Теория. Технология монтажа двигателей для подвижных роботов. Конструкция зависимой и независимой подвесок.

Практика. Создание программы для поворотов робота в движении

Контроль: Наблюдение

17. Движение вдоль сторон квадрата.

Теория. Изучение по схемотехническим рисункам принципов работы двигателя, его конструкции.

Практика. Создание программа для движения робота по квадрату.

Контроль: Наблюдение

18. Разработка комплексной системы управления робота

Теория. Определения, назначение, основные типы. Определение звена, механизма, машины. Назначение механических элементов. Основные типы механизмов, машин, звеньев.

Практика. Проработка конструкций механизмов различных передач, изучение принципов действий и их применения. Изготовление каждое соединения в отдельности по схеме с учетом использования только дополнительных деталей без контроллера, двигателей и датчиков.

Контроль. Беседа

19. Конструируем собственные блоки - первая подпрограмма.

Теория. Составление программ для роботов, выполняющих упражнение: движение по линии, осуществление поворотов.

Практика. Изготовление первоначальной программы при помощи блока "Переключателя". Дальнейшее совершенствование путем добавления одного, двух датчиков цвета или препятствий. Создание программ используя блоки переменных данных и арифметических действий.

Контроль: Анализ работ

20. Сборка робота Clawbot

Практика. Сборка модели робота Clawbot по инструкции и его программирование.

Контроль. Анализ работ

21. Применение роботов в жизни

Теория. Игра-викторина

Контроль. Викторина

22. Испытание робота в использовании.

Теория. Описание робота

Практика. Испытание робота в движении.

Контроль. Обсуждение, наблюдение

23. Соревнование роботов. Эстафета, преодоление препятствий. Выставка работ учащихся

Практика. Соревнование. Демонстрация готового робота.

Контроль. Готовая работа

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Год	Дата	Дата	Количест	Количество	Количеств	Режим
обучения	начала занятий	окончаний занятий	во учебных	учебных дней	о учебных часов	занятий
	34.13.11.11	3411111111	недель	gii cii	1400	
1 год	01.09.2025	31.05.2026	36	72	72	2 раза в
обучения						неделю
						по 1 часу

Условия реализации программы

Материально-техническое обеспечение

Результат реализации программы «Робототехника» во многом зависит от подготовки помещения, материально-технического оснащения и учебного оборудования. Размещение учебного оборудования должно соответствовать требованиям и нормам СаНПина и правилам техники безопасности. При проведении практических и лабораторных работ особое внимание следует уделить рабочему месту обучающегося.

Для эффективности образовательного процесса необходимы:

- техническое оборудование
- компьютеры с выходом в Интернет (для реализации электронного обучения и дистанционных образовательных технологий)
 - отдельные столы, для практических работ с конструктором,
- компьютеры с установленным необходимым программным обеспечением;
 - проектор;
 - интерактивная доска;
 - робототехнические конструкторы;
 - источники питания.
 - программная среда

Кадровое обеспечение

Требования к педагогу дополнительного образования:

- высокий уровень профессионализма;
- высокий уровень квалификации и педагогического мастерства;
- владение современными педагогическими технологиями;
- владение педагогической этикой;
- знание психолого-педагогических основ развития творческого и логического мышления детей.

Функции педагога дополнительного образования в реализации учебной деятельности:

– создание условий для организации творческой деятельности учащихся.

Форма аттестации и контроля

Проверка полученных умений, навыков и знаний осуществляется на контрольных занятиях, а также в процессе участие обучающихся в соревнованиях разного уровня, профильных конференциях и семинарах, внутренних соревнованиях.

Текущий контроль усвоения теоретического материала осуществляется с помощью опроса (зачета) по отдельным темам (разделам).

Основным результатом обучения является творческая работа — создание и программирование робототехнического устройства собственной конструкции.

Аттестация по итогам освоения программы проводится в форме итогового зачета по разделам программы и защиты творческого проекта.

Формой итогового контроля также может являться результативное участие обучающегося в конкурсных мероприятиях школьного, муниципального и более высокого уровней.

Оценочные материалы

Для оценивания результатов текущей и промежуточной диагностики используется уровневая система: низкий, средний и высокий уровень. Во время всего периода обучения применяются тесты на развитие памяти, мышления, воображения.

Оценочный лист заполняется педагогом в конце учебного года по результатам наблюдений, тестирования и выполнения практических заданий.

Оценочный лист по итогам обучения по дополнительной общеразвивающей

программе «Образовательная робототехника»

программе «Оорз Критерии оценки	<u> Низкий</u>	Средний	Высокий
критерии оденки	уровень	уровень	уровень
	уровень	уровень	уровень
	Знают		
правила безопасной работы;			
основные компоненты			
конструкторов			
конструктивные особенности			
различных моделей, сооружений			
и механизмов;			
виды подвижных и неподвижных			
соединений в конструкторе;			
	Умеют		
работать с литературой, с			
журналами, с каталогами, в			
интернете (изучать и			
обрабатывать информацию);			
самостоятельно решать			
технические задачи в процессе			
конструирования роботов			
(планирование предстоящих			
действий, самоконтроль,			
применять полученные знания);			
создавать модели при помощи			
специальных элементов по			
разработанной схеме, по			
собственному замыслу.			

Критерии оценивания знаний, умений и навыков обучающихся

Параметры оценивания	Уровни освоения программы			
Высокий		Средний	Низкий	
1 171 1	1 71	Обучающийся	1 J 1 J F	
		пытается		
		самостоятельно		
		собрать робота,		
		прибегает к помощи		
		педагога.		
Программирование	Обучающийся	Обучающийся знает	Обучающийся	
типовых роботов с	свободно	основные элементы	испытывает	
помощью	ориентируется в	программного	затруднения в	
«внутреннего»	программном	обеспечения.	нахождении	
языка	обеспечении.	Удовлетворительно	требуемых	
программирования.	Хорошо владеет	владеет навыками	команд. С трудом	
	навыками	составления	демонстрирует	
	составления	программ,	навыки	
	программ.	но не укладывается	составления	
	Последовательно и	в заданные	программ. Не	
	исчерпывающе	временные сроки.	укладывается в	
	отвечает на		заданные	
	поставленные		временные	
	вопросы.		рамки	

Методические материалы

При обучении по программе используются следующие технологии: группового обучения, проектного обучения, здоровьесберегающие, технология дистанционного обучения.

Групповые технологии — обучение проходит в разновозрастных группах, объединяющих старших и младших общим делом.

Технология проектного обучения - ребята учатся создавать проекты по решению доступных им проблем и умело защищать их перед другими. Поощряется смелость в поисках новых форм, проявление фантазии, воображения.

Здоровьесберегающие технологии. Важное значение в проведении занятий имеет организация динамических пауз. Введение этих упражнений в процесс занятия обеспечивает своевременное снятие физической усталости и оживление работоспособности детей. Количество таких пауз (физкультминутки) в течение занятия зависит от возраста детей, от сложности изучаемого материала, от состояния работоспособности. Занятия строятся с учетом индивидуальных и возрастных особенностей, степени подготовленности, имеющихся знаний и навыков.

Учебное занятие - основной элемент образовательного процесса, который проходи в комбинированной форме в двух частях: теоретической и практической.

Теоретическая часть проходит в виде лекций, где объясняется новый материал, практическая часть — закрепление пройденного материала посредством выполнения практических заданий по разделам и темам программы. На занятиях используется индивидуальный подход к каждому обучающемуся, особенно при выполнении итоговой практической работы.

В процессе выполнения практических работ происходит обсуждение способов решения поставленной задачи, выбора инструментов. Комбинированная форма занятий обеспечивает смену видов деятельности и перерывы в работе за компьютером.

Список литературы для педагога

- 1. Ермишин К.В., Кольин М.А., Каргин Д.Н., Панфилов А.О. Методические рекомендации для преподавателя: Учебно-методическое пособие. М., 2015.
- 2. Занимательная робототехника. Научно-популярный портал [Электронный ресурс]. Режим доступа: http://edurobots.ru/2017/06/vex-iq-1/
- 3. Каширин Д.А. Основы робототехники VEX IQ. Учебнометодическое пособие для учителя. ФГОС/ Д.А. Каширин, Н.Д. Федорова. М.: Издательство «Экзамен», 2016. 136 с. ISBN 978-5-377-10806-1
- 4. Каширин Д.А. Основы робототехники VEX IQ. Рабочая тетрадь для ученика. ФГОС/ Д.А. Каширин, Н.Д. Федорова. М.: Издательство «Экзамен», 2016. 184 с. ISBN 978-5-377-10805-4
- 5. Мацаль И.И. Основы робототехники VEX IQ. Учебно-наглядное пособие для ученика. $\Phi\Gamma$ OC/ И.И. Мацаль, А.А. Нагорный. М.: Издательство «Экзамен», 2016. 144 с. ISBN 978-5-377-10913-6
- 6. Методическое пособие для учителя. Dobot Magician / пер. с англ. С.В. Чернышов. М.: Экзамен, 2018.
- 7. Dobot MOOZ. Руководство пользователя / пер. с анг. С.В. Чернышов. М.: Экзамен, 2020.
- 8. VEX академия. Образовательный робототехнический проект по изучению основ робототехники на базе робототехнической платформы VEX Robotics [Сайт] [Электронный ресурс]. Режим доступа: http://vexacademy.ru/index.html

Список литературы для учащихся и их родителей

Александр Барсуков. Кто есть, кто в робототехники. – М., 2005 г.

Крайнев А.Ф. Первое путешествие в царство машин. – М., 2007 г.

Макаров И.М., Топчеев Ю.И. Робототехника. История и перспективы. М., 2003г.

Рыкова Е. А. Lego-Лаборатория (Lego Control Lab). Учебно-методическое пособие. — СПб, 2000г.

Выготский Л.С. Воображение и творчество в детском возрасте. – М., 2016

Мир вокруг нас: Книга проектов: Учебное пособие.- М.: Просвещение, 2014.

Пейперт С. Переворот в сознании: дети, компьютеры и плодотворные идеи. М.: Педагогика, 1989

Энциклопедический словарь юного техника. – М., Педагогика, 2008